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1 Introduction

This paper presents the underlying geometry of the approximate bi-invariant metrics of
Larochelle and McCarthy 1995 and Etzel and McCarthy 1996. The geometry that they
algebraically exploit to yield approximate bi-invariant metrics for measuring the distance
between two planar locations(Larochelle and McCarthy) or two spatial locations(Etzel
and McCarthy) of a finite rigid body is presented. Moreover, we discuss the relationship
between the geometry and approximate bi-invariance of these metrics. Finally, the previ-
ous discussion serves as a foundation for a geometry based examination of the merits and
limitations of these approximately bi-invariant displacement metrics.

Simply stated a metric measures the distance between two points in a set. There exist
numerous useful metrics for defining the distance between two points in Euclidean space,
however, defining similar metrics for determining the distance between two locations of a
finite rigid body is still an area of ongoing research, see Kazerounian and Rastegar 1992,
Bobrow and Park 1995, Park 1995, Martinez and Duffy 1995, Larochelle and McCarthy
1995, Etzel and McCarthy 1996, Gupta 1997, Larochelle and Tse 1998, and Chirikjian
1098. In the cases of two locations of a finite rigid body in either E3(spatial locations)
or E2(planar locations) any metric used to measure the distance between the locations
yields a result which depends upon the chosen reference frames, see Bobrow and Park
1995 and Martinez and Duffy 1995. Recall that a bi-invariant metric is independent of
choice of both the fixed and moving reference frames. Interestingly, for the specific case
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cienting 2 finite rigid body in E? bi-invariant metrics do exist. For example, in 1983
Of?;ani and Roth 1983 defined the distance between two orientations of a rigid body as
he magnitude of the difference between the associated quaternions and a proof that this
: tric is bi-invariant may be found in Larochelle and McCarthy 1995.
mem 1995 Larochelle and McCarthy presented an algorithm for approximating a set of
2 locations in planar Euclidean space (E?) with n spherical orientations in (E*). By uti-
lizing the bi-invariant metric of Ravani and Roth on spherical orientations they arrived
aban approximate bi-invariant metric for planar locations in which the error induced by
ihe spherical approximation is of the order ﬁlf, where R is the radius of the approximating
sphere(hence the term projective displacement metric). Their algorithm for an approxi-
_‘mately bi-invariant metric is based upon an algebraic formulation which utilizes Taylor

series expansions of sine() and cosine() terms in homogeneous transforms, see McCarthy

1981311 1996 Etzel and McCarthy extended the works of Larochelle and McCarthy by using
orientations in E! to approximate locations in E3. Their algorithm for an approximately
bi-invariant metric is also based upon an algebraic formulation which utilizes Taylor series
expansions of sine() and cosine() terms, see Ge 1994. Moreover, the error induced by the
hyperspherical approximation is also of the order ﬁ%, where here R is the radius of the
approximating hypersphere.

In this work we present studies of the approximate bi-invariant projective metrics
to illuminate the relationships between the geometry and the approximate bi-invariance
of these metrics. Moreover, the discussion serves as a foundation for a geometry based
examination of the merits and limitations of these approximately bi-invariant displacement
metrics.

9 Planar Projective Displacement Metric

We now review how spherical displacements may be used to approximate planar displace-
ments with some finite error associated with the radius R of the sphere, see Larochelle
and McCarthy 1995.

Recall that a general planar displacement (a, b, %) in the z = R plane may be expressed
as a homogeneous coordinate transformation,

X T cosyp —siny a T
Y | =[4]| v |=| siny cosyp b y . 1)
zZ 1 0 0 R 1

Now consider a general spherical displacement in which the parameters used to describe
the displacement are the three angles longitude(#), latitude(¢), and roll(¢). Using these
parameters a general spherical displacement may be written as,

X z z
Y = [As] Yy = Rat(y, 9)Rot(a:, _¢)R0t(z1 ¢) yl- (2)
Z z z
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We now define & = R# as the longitudinal arc length and b = R¢ as the latituding]
arc length. Now, if we consider only displacements in the z = R plane and we expand the
trigonometric functions sine() and cosine() using a Taylor series about 0 and substitute
the angles 8 and ¢ from above into the expansions then we may we rewrite Eq. 2 as,

X costp —siny @ T
(Y) = [sinw cosy 5}(1})
Z 0 0 R 1

0 0 0 z
= 0 0 R 0 . y
R —dcosyp—bsiny asing —beosy -3 (6.2+b2) 1
1
+0(5) o

Note that the first term of Eq. 3 is identical to the equation for general planar displace-
ments, Eq. 1. From the derivation and analysis of Eq. 3 we conclude that spherical
displacements may be used to approximate planar displacements with some finite error
which is associated with the radius of the sphere. The procedure used to approximate a
planar displacement (a, b,7) with a displacement on a sphere of radius R is as follows,
Using the definition of the arc lengths and the radius of the sphere we obtain the thres
angles; 0, ¢, and v, which describe the spherical displacement on the sphere of radius
R that approximates the prescribed planar displacement: 6 = &, ¢ = %, and, ¥ = 9.
Finally, let q, and g, be the quaternion representations of two spherical displacements
(6,6, %)1 & (6, ¢, ), which approximate two planar displacements (a,b,¥)1 & (a,b,%),.
The measure d of the magnitude of the relative displacement between the two planar
displacements is defined as,

& = (@ — a2)7 (a1 — @) )

3 Spatial Projective Displacement Metric

Etzel and McCarthy extended the above planar methodology to spatial displacements
by using orientations in BE* to approximate locations in E3. They showed that a 4x4
homogeneous transform can be approximated by a pure rotation [D] in E4,

[D] = [J (@, B, K6, ¢, ¥)] (3)
where,
cos o 0 0 sin o
—gin fsino cosf3 0 sin fcoso

J(e, 8,7 =

—sinycosfsine —sinysinf cosy sinycosfcosa
—cosycosBsine —sinfcosy —siny cosycosfcosc
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The angles o, B and 1 are defined as follows: tan(a) = &, tan(B) = %, and tan(y) = %
where dz, dy, and d. are the components of the translation vector d of the displace-
fmé at'and R is the radius of the hypersp?here‘ Finally, let @; and @, be the biquaternion
;representations of two hyper:s‘pher}cal displacements (8, ¢,%, o, 8,71 & (8, 6,9, ¢, 8,7)»
which approximate two spatial displacements (dz,dy,d.,0, ¢, v) & (d:,dy,d., 0, ¢, ).
The measure d of the magnitude of the relative displacement between the two spatial
isplacements is defined as,

d® = (& — 42)7 (a1 — ) (6)

4 Projective Metric Geometry

ﬁere we analyze the geometry of the projective displacement metrics. In this analysis we
seek to examine the role of the radius of the approximating sphere with respect to the
approximate bi-invariance of the metric. The goal is to determine criteria for selecting
appropriate radii for a set of prescribed displacements. Our focus will be the planar metric
but the results apply equally well to the general spatial case.

~ Etzel and McCarthy present a numerical example and conclude that “Decreasing R
increases the influence of the translation terms”. They go on to state “The conclusion is
the parameter R is a physical realization of the weighting term often used to construct
metrics combining rotations and translations in space (Park 1995)". Here, we perform a
more formal study of the effect of R and its role as a weighting term.

" - Consider limg.,, of the spherical approximation to a planar displacement. Eq. 3 then

becomes,
: X cosyp —siny 0 T
Y | = |sinYy cos?¥ O y | +[0- (7)
z 0 0 o 1

nar displacement is now approximated as a pure planar rotation. Since the displacement
15 purely rotational the metric is fully bi-invariant.

Consider now limg_,g of the spherical approximation to a planar displacement. Eq. 3
en becomes,

X cosy ~—siny koo T 0 0 0
Y | = | singy cosyp oo y |+ O 0 0 |. (8)
Z 0 0 0 1 +oo +oo —o0
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Note that the region of approximation degenerates to the infinity plane z = 0 and thy;
infinite translation dominates the displacement. This concurs with and supports the o.
servations of Etzel and McCarthy. Moreover, since the displacement is purely translations]
the projective metric is again bi-invariant.

We have shown that as limg_,c the projective metric disregards the translation termg
of planar displacements and that as limg 4o the projective metric disregards the rotatigy
terms. Hence the interpretation of R as a physical realization of the weighting term oftep
used to construct metrics combining rotations and translations in space is valid. We
proceed now by seeking criteria to determine appropriate radii for a set of prescribed
displacements.

First, we present a numerical study to illustrate the conclusions of the previous section,
In Fig. 1 we consider the magnitude of two planar displacements: (0,0, 60) and (1, 1,0).
Note that the magnitude of the purely rotational displacement is independent of the choice
of R while the magnitude of the purely translational displacement has a 99% variation
with respect to R.
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Figure 1: Metric Variation for Uncoupled Displacements

For a prescribed set of planar displacements Larochelle and McCarthy suggest R =
lf;% ~ 7.6L where L is the maximum translation component of the workspace. In related
works Etzel and McCarthy select R = 10L and Tse and Larochelle select R = 400L.
Here we examine the magnitude of two of the displacements studied in Larochelle and
MeCarthy for 50 < R < 400L, see Fig. 2 where = indicates the values of R corresponding
to the previous works. As expected, the displacement with the larger translation is more
sensitive to choice of R. The displacement (—1.5,3,20) has a 1.5% variation in magnitude
with respect to R while the (13, 12.5, —35) displacement exhibits a 9.8% variation.

5 Conclusions

We have shown that the interpretation of the projective sphere radius R is a physical
realization of the weighting term often used to construct metrics combining rotations and
translations in space is valid. Moreover, as limg, the projective metric disregards the
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Figure 2: Metric Variation for Coupled Displacements

translation terms of displacements and that as limg_,q the projective metric disregards the

;otation terms. Finally, we have illustrated that the radius selection guidelines presented

by Larochelle and McCarthy(R = 2£) and Etzel and McCarthy(R = 10L) yield acceptable
weighting of rotations and translations.
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